
Illumination and Shading

Naeem Iqbal ch.

Illumination and Shading
• Problem: Model light/surface points

interaction to determine final color and
brightness

• Apply the lighting model at a set of points
across the entire surface

Illumination Model

• The governing principles for computing the
illumination

• A illumination model usually considers:

– Light attributes (intensity, color, position,
direction, shape)

– Object surface attributes (color, reflectivity,
transparency, etc)

– Interaction among lights and objects

Basic Light Sources

Light intensity can be
independent or
dependent of the
distance between
object and the light
source

Local Illumination

• Local illumination: only consider the light, the
observer

• position, and the object material properties
OpenGL does this

Global Illumination
• Global illumination: take into account the

interaction of light from all the surfaces in the
scene

• Example: Ray tracing

Simple Local Illumination
• The model used by OpenGL

• Consider three types of light contribution to compute
the final illumination of an object
– Ambient

– Diffuse

– Specular

• Final illumination of a point (vertex) =

ambient + diffuse + specular

• Materials reflect each component differently
– Use different material reflection coefficients, Ka, Kd, Ks

Ambient Light Contribution
• Ambient light = background light

• Light that is scattered by the environment

• Frequently assumed to be constant

• Very simple approximation of global
illumination

• No direction: independent of light position,
object orientation, observer’s position or
orientation

Ambient = I x Ka

Constant

Ambient Light Example

Diffuse Light Contribution
• Diffuse light: The illumination that a surface

receives from a light source and reflects
equally in all direction

It does not matter where
the eye is

Diffuse Lighting Example

Diffuse Light Calculation

• Need to decide how much light the object
point receive from the light source – based on
Lambert’s Law

Diffuse Light Calculation

• Lambert’s law: the radiant energy D that a
small surface patch receives from a light
source is:

D = I x cos (θ)

• I: light intensity

• θ: angle between the light vector and the
surface normal

Specular light contribution

• The bright spot on the object

• The result of total reflection of the incident
light in a concentrate region

Specular light example

Specular light calculation
• How much reflection you can see depends on

where you are
Only position the eye can see specular
from P if object has an ideal reflection
surface

But for non-perfect surface you will
still see specular highlight when you
move a little bit away from the ideal
reflection direction θ is deviation of
view angle from mirror direction
When θ is small, you see more
specular highlight

Specular light calculation

•Phong lighting model

•The effect of ‘n’ in the Phong model

Put it all together

• Illumination from a light:

Illum = ambient + diffuse + specular

= Ka x I + Kd x I x (cos θ) + Ks x I x cos(Ф)n

If there are N lights

Total illumination for a point P = Σ (Illum)

• Some more terms to be added (in OpenGL):
– Self emission

– Global ambient

– Light distance attenuation and spot light effect

Adding Color
• Sometimes light or surfaces are colored

• Treat R,G and B components separately

• i.e. can specify different RGB values for either light or
material

• Illumination equation goes from:

Illum = ambient + diffuse + specular

= Ka x I + Kd x I x (cos θ) + Ks x I x cos(Ф)n

To:

Illum_r = Kar x Ir + Kdr x Ir x (cos θ) + Ksr x Ir x cos(Ф) n

Illum_g = Kag x Ig + Kdg x Ig x (cos θ) + Ksg x Ig x cos(Ф) n

Illum_b = Kab x Ib + Kdb x Ib x (cos θ) + Ksb x Ib x cos(Ф) n

Adding Color

Exponent, n Specular
Ksr, Ksg,ksb
Diffuse
Kdr, Kdg,kdb
Ambient
Kar, Kag,kab
Material

Lighting in OpenGL

• Adopt Phong lighting model
– specular + diffuse + ambient lights

– Lighting is computed at vertices
• Interpolate across surface (Gouraud/smooth shading)

• Setting up OpenGL Lighting:
– Light Properties

– Enable/Disable lighting

– Surface material properties

– Provide correct surface normals

– Light model properties

Light Properties
• Properties:

– Colors / Position and type / attenuation

glLightfv(light, property, value)

1. constant: specify which light you want to set the property

E.g: GL_LIGHT0, GL_LIGHT1, GL_LIGHT2 … you can

create multiple lights (OpenGL allows at least 8 lights)

2. constant: specify which light property you want to set the
value

E.g: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION

(check the red book for more)

3. The value you want to set to the property

1 2 3

Property Example

• Define colors and position a light
GLfloat light_ambient[] = {0.0, 0.0, 0.0, 1.0};

GLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};

GLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};

GLfloat light_position[] ={0.0, 0.0, 1.0, 1.0};

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);

glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

What if I set Position to (0,0,1,0)?

Color

Position

Types of lights

• OpenGL supports two types of lights

– Local light (point light)

– Infinite light (directional light)

• Determined by the light positions you provide

– w = 0: infinite light source

– w != 0: point light – position = (x/w, y/w, z/w)

GLfloat light_position[] = {x,y,z,w};
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Turning on the lights

• Turn on the power (for all the lights)

– glEnable(GL_LIGHTING);

– glDisable(GL_LIGHTING);

• Flip each light’s switch

– glEnable(GL_LIGHTn) (n = 0,1,2,…)

Controlling light position
• Modelview matrix affects a light’s position
• Two options:
• Option a:

– Treat light like vertex
– Do pushMatrix, translate, rotate, .. glLightfv position,

Popmatrix
– Then call gluLookat
– Light moves independently of camera

• Option b:
– Load identity matrix in modelview matrix
– Call glLightfv then call gluLookat
– Light appears at the eye (like a miner’s lamp)

Material Properties

• The color and surface properties of a material
(dull, shiny, etc)

• How much the surface reflects the incident lights
(ambient/diffuse/specular reflection coefficients)

glMaterialfv(face, property, value)

• Face: material property for which face (e.g.
GL_FRONT, GL_BACK, GL_FRONT_AND_BACK)

• Property: what material property you want to set
(e.g. GL_AMBIENT, GL_DIFFUSE,GL_SPECULAR,
GL_SHININESS, GL_EMISSION, etc)

• Value: the value you can to assign to the property

Material Example
• Define ambient/diffuse/specular reflection and shininess

GLfloat mat_amb_diff[] = {1.0, 0.5, 0.8, 1.0};

GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};

GLfloat shininess[] = {5.0}; (range: dull 0 – very shiny 128)

glMaterialfv(GL_FRONT_AND_BACK, L_AMBIENT_AND_DIFFUSE,
mat_amb_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

refl. coeff.

