Computer Graphics : Viewing in 3-D

By Naeem Iqbal ch.

Transformations in 3-D

- How do transformations in 3-D work?
- 3-D homogeneous coordinates and matrix based transformations

Projections

- History
- Geometrical Constructions
- Types of Projection
- Projection in Computer Graphics

3-D Coordinate Spaces

- Remember what we mean by a 3-D
- coordinate space

Translations In 3-D

- To translate a point in three dimensions by
- $d x$, dy and dz simply calculate the new points as follows:
- $x^{\prime}=x+d x y^{\prime}=y+d y z^{\prime}=z+d z$

Scaling In 3-D

- To sale a point in three dimensions by $s x$, sy \& sz simply calculate the new points as follows: $\bullet x^{\prime}=s x^{*} x y^{\prime}=s y^{*} y z^{\prime}=s z^{*} z$

Rotations $\ln 3-\mathrm{D}$

- When we performed rotations in two dimensions we only had the choice of rotating about the z axis
- In the case of three dimensions we have more options
-Rotate about x - pitch - Rotate about y -yaw
-Rotate about z -roll

Rotations In 3-D (cont...)

- The equations for the three kinds of rotations in 3-D are as follows:

Homogeneous Coordinates In 3-D

- Similar to the 2-D situation we can use homogeneous coordinates for 3-D transformations
- - 4 coordinate column vector
- All transformations can then be represented as matrices

3D Transformation Matrices

Translation by
$d x, d y, d z$$\left[\begin{array}{cccc}1 & 0 & 0 & d x \\ 0 & 1 & 0 & d y \\ 0 & 0 & 1 & d z \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}s x & 0 & 0 & 0 \\ 0 & s y & 0 & 0 \\ 0 & 0 & s z & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ Scaling by
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Rotate About X-Axis
Rotate About Y-Axis
Rotate About Z-Axis

3D Rotation About Arbitrary Axis

$$
\begin{aligned}
& k=\frac{P_{1}-P_{0}}{\left\|P_{1}-P_{0}\right\|} \\
& \sin \alpha=k_{y} / d \\
& \cos C=k_{z} / d \\
& d=\sqrt{k_{z}^{2}+k_{y}^{2}}
\end{aligned}
$$

$\operatorname{trans}(-\mathrm{P} 0)$: translate axis k to origin

- $\operatorname{rot}(x, a l p h a):$ rotate about $x-$ axis to bring axis k^{\prime} to lie in xz plane.
- The amount of rotation is determined by looking at the projection on the yz plane.
- Alpha need not actually be calculated; it's sine and cosine can be evaluated directly

3D Rotation About Arbitrary Axis

- $\operatorname{rot}(y,-$ beta $)$: rotate about y - axis to align axis $\mathrm{k}^{\prime \prime}$ with z - axis.
- As in the previous step, we need not actually calculate beta.
- $\operatorname{rot}(z$, theta $):$ perform the desired rotation to the object.
- reverse all the other steps.

Remember The Big Idea

What Are Projections?

- Our 3-D scenes are all specified in 3-D world coordinates
- To display these we need to generate a 2-D image project objects onto a picture plane

So how do we figure out these projections?

Converting From 3-D To 2-D

- Projection is just one part of the process of converting from 3-D world coordinates to a 2-D image

Types Of Projections

- There are two broad classes of projection:
-Parallel:Typically used for architectural and engineering drawings
\square Perspective: Realistic looking and used in computer

Parallel Projection

Perspective Projection

Types Of Projections (cont...)

- For anyone who did engineering or technical drawing

Parallel Projections

- Some examples of parallel projections

Orthographic Projection

Isometric Projections

- In isometric projection the angles between the projection of the axes are equal i.e. 120°.

Q*Bert

Sim City

Perspective Projections

- Perspective projections are much more realistic than parallel projections

Perspective Projections

- There are a number of different kinds of perspective views
- The most common are one-point and two point perspectives

One Point Perspective Projection

Two-Point
Perspective Projection

Elements Of A Perspective Projection

The Up And Look Vectors

- The look vector indicates the direction in which the camera is pointing
- The up vector determines how the camera is rotated
- For example, is the camera held vertically or horizontally

Summary

In this part of today's lecture we looked at:

- Transformations in 3-D
- Very similar to those in 2-D
- Projections
- 3-D scenes must be projected onto a 2-D image Plane
- Lots of ways to do this
- Parallel projections
- Perspective projections
- The virtual camera

