Computer Graphics : Viewing in 3-D

By Naeem Iqbal ch.

Transformations in 3-D

- How do transformations in 3-D work?
- 3-D homogeneous coordinates and matrix based transformations

Projections

- History
- Geometrical Constructions
- Types of Projection
- Projection in Computer Graphics

3-D Coordinate Spaces

- Remember what we mean by a 3-D
- coordinate space

Translations In 3-D

• To translate a point in three dimensions by

• dx, dy and dz simply calculate the new points as follows:

•
$$\mathbf{x}' = \mathbf{x} + d\mathbf{x} \mathbf{y}' = \mathbf{y} + d\mathbf{y} \mathbf{z}' = \mathbf{z} + d\mathbf{z}$$

Scaling In 3-D

• To sale a point in three dimensions by sx, sy & sz simply calculate the new points as follows:

•x' = sx*x y' = sy*y z' = sz*z

Rotations In 3-D

When we performed rotations in two dimensions we only had the choice of rotating about the z axis
In the case of three dimensions we have more options

Rotate about x – pitch
Rotate about y –yaw
Rotate about z -roll

Rotations In 3-D (cont...)

The equations for the three kinds of rotations in 3-D are as follows:

Homogeneous Coordinates In 3-D

- Similar to the 2-D situation we can use homogeneous coordinates for 3-D transformations
- 4 coordinate column vector
- All transformations can then be represented as matrices

3D Transformation Matrices

	1	0	0	dx	S x	0	0	0	Scaling by sx, sy, sz
Translation by dx, dy, dz	0	1	0	dy	0	Sy	0	0	Scaling by
	0	0	1	dz	0	0	Sz	0	sx, sy, sz
	0	0	0	1	0	0	0	1	

1 0 0 0 $\cos\theta = 0 \sin\theta = 0$ $\cos\theta - \sin\theta = 0$ $0 \cos\theta - \sin\theta = 0$ 0 1 0 0 $\sin\theta$ $\cos\theta$ 0 0 $-\sin\theta \ 0 \ \cos\theta \ 0 \ 0 \ 1 \ 0$ $\sin\theta \cos\theta = 0$ 0 0 1 0 0 0 1 0 0 0 0 0 Rotate About X-Axis Rotate About Y-Axis Rotate About Z-Axis

3D Rotation About Arbitrary Axis

trans(-P0): translate axis k to origin

 rot(x,alpha): rotate about xaxis to bring axis k' to lie in xz plane.

- The amount of rotation is determined by looking at the projection on the yz plane.
 - Alpha need not actually be calculated; it's sine and cosine can be evaluated directly

3D Rotation About Arbitrary Axis

rot(y,-beta): rotate about y- axis
 to align axis k" with z- axis.

- As in the previous step, we need not actually calculate beta.
- rot(z, theta): perform the desired rotation to the object.
- reverse all the other steps.

Remember The Big Idea

What Are Projections?

- Our 3-D scenes are all specified in 3-D world coordinates
- To display these we need to generate a 2-D image project objects onto a picture plane

So how do we figure out these projections?

Converting From 3-D To 2-D

 Projection is just one part of the process of converting from 3-D world coordinates to a 2-D image

Types Of Projections

There are two broad classes of projection:
 Parallel: Typically used for architectural and engineering drawings

Perspective: Realistic looking and used in computer

• For anyone who did engineering or technical drawing

Parallel Projections

Some examples of parallel projections

Orthographic Projection

Isometric Projections

 In isometric projection the angles between the projection of the axes are equal i.e. 120°.

Q*Bert

Sim City

Perspective Projections

Perspective projections are much more realistic than parallel projections

Perspective Projections

There are a number of different kinds of perspective viewsThe most common are one-point and two point perspectives

Elements Of A Perspective Projection

The Up And Look Vectors

• The **look vector** indicates the direction in which the camera is pointing • The **up vector** determines how the camera is rotated • For example, is the camera held vertically or horizontally

Summary

In this part of today's lecture we looked at:

- Transformations in 3-D
 - Very similar to those in 2-D

Projections

 3-D scenes must be projected onto a 2-D image Plane

Lots of ways to do this
Parallel projections
Perspective projections
The virtual camera