
ELECTROMAGNETIC WAVES 

 

 Light consists of an electric field and a magnetic field that oscillate at very 
high rates, of the order of 1014 Hz.  

 These fields travel in wavelike fashion at very high speeds. A picture of an 
electromagnetic wave' traveling along the z direction appears in Fig. 3-1.  

 The electric field is plotted at three times, showing the progress of the 
wave.  

 At any fixed location, the field amplitude varies at the optic frequency.  

 The amplitude repeats itself after one period of the oscillation.  

 The wave repeats itself in space, at a fixed time, after a distance . This 
distance is the wavelength.  

 Its reciprocal, 1/ּג, is the wave number. 

 

 

 

 

Figure 3-1     Electric field for a wave 
traveling in the z direction. The field is 
drawn at three different times to 
illustrate the motion of the wave in 
the direction of travel. 

 

 

 

 

The electric field for the wave sketched in Fig. 3-1 can be written as 

 

where  E0 is the peak amplitude,  

w = 2 πfr/s The factor w is called the radian frequency.  

        f  is the frequency in hertz.  

The term  k is the propagation factor. It is given by  

 



 

where v is the phase velocity of the wave.  

The factor wt - kz is the phase of the wave,  

while kz is the phase shift owing to travel over length z.  

 



 A plane wave is one whose phase is the same over a planar surface.  

 In the present example, the phase is the same over any plane defined by a 
fixed value of z, so that Eq. (3-1) represents a plane wave.  

 If time is held constant, then Eq. (3-1) shows the sinusoidal spatial variation 

of the field.  

 

For example, if t = 0,  

then E = E0 sin (- kz) 

= -E0 sin kz. 

 

 On the other hand, if the position is fixed, then Eq. (3-1) shows the sinusoidal 
time variation of the field.  

 Taking the fixed position as the origin, z = 0, yields E= E0 sin wt , illustrating 
this point. 

 

In terms of the refractive index n, the velocity is v = c/n, so that 

 

The propagation constant in free space will be denoted by ko. Since n = 1 in 
free space, 

 

Combining Eqs. (3-3) and (3-4), the propagation constant in any medium can 
be given in terms of the free-space propagation value by 

 

According to Eq. (1-3),  = v/f. Substituting this into E.q. (3-2) yields 

 

 

This equation relates the propagation constant in a medium to the wavelength 

 

 



in that medium.  

The free-space wavelength is ּ0ג = v/f and the wavelength in any medium is ּג = 
v/f, so that 

 

The wavelength in a medium is shorter than in free space, because the 
refractive index is greater than unity. 

 

 The power in an optic beam is proportional to the light intensity (defined as 
the square of the electric field).  

 Intensity is proportional to irradiance, the power density.  

 The units of ir-radiance(power density) are watts per square meter.  

 Sometimes intensity is used to describe the total power in a wave. This 
use, although not accurate, is common. 

 

 If a wave does not lose energy as it propagates, then Eq. (3-1) and Fig. 3-
1 provide appropriate descriptions.  

 If attenuation is important, than the equation and the figure must be 
modified. The corrected equation is 

 

 

where w and k have the same meaning as in Eq. (3-1). 

  

 The term α is the attenuation coefficient. Its value determines the rate at 
which the electric field diminishes as it travels through the lossy medium. 

 Although the decay is exponential, the attenuation coefficient is so small for 
quality fibers that there is little attenuation (maybe just a few decibels), even 
over long, paths. 

 

 

 



 

Figure 3-2    Attenuation of a 
traveling wave. 

 

 In a lossy medium, the field appears as shown in Fig. 3-2, The dashed line on 
the figure is a curve of the factor exp (- αz), describing the loss in Eq. (3-8). 

 

 The intensity of a light beam is proportional to the square of its electric field. 
Therefore, the power in the beam corresponding to Eq. (3-8) diminishes as 
exp ( -2 αz).  

 

 For a path of length L, the ratio of the output power to the input power is exp 
(-2 αL). 

 

  The power reduction in decibels is thus 

dB = 10 log10exp(-2αL) 

 This will turn out to be a negative number for propagation through a lossy 
medium.  

 From this last expression, we can find the relationship between the 
attenuation coefficient and the power change in dB/km.  

 The result is 

db/km = -8.685α 

where α is given in units of km-1.. 

 

Still another useful relationship between the input and output powers and 
the transmission loss is the following, known as Beer's law: 

Pout / Pin    = 10yL/1° 

  

where L is the path length and y is the power change in dB/km. According to our 
sign convention, losses correspond to positive values of α and negative values 
of y. 

 



3-2  DISPERSION,  PULSE DISTORTION, AND INFORMATION RATE 

 Up to this point we have been assuming that optic sources in fiber systems 
emit light at single wavelength (or, equivalently, at a single frequency). This 
is never true in practice. Real sources produce radiation over a range 
wavelengths.  

 This range is the source linewidth or spectral width. The smaller the 
linewidth, the more coherent the source.  

 A perfectly coherent source emits light at a sine wavelength. Thus, it has 
zero linewidth and perfectly monochromatic.  

 Typical line width of common sources are listed in Table 3-1.The conversion 
between spectral width wavelengths Δ ּג and bandwidth in frequency Δ f is 

 

where f is the center frequency,  

  is the center wavelength, and גּ 

Δ f is the range of frequency radiated.  

 

This conversion is simply the mathematical statement that the fractional 
emission width is the same whether computed on the basis of wavelength 
spread or frequency spread. 

TABLE 3-1.    Typical Source Spectral Widths 

Source                                     Linewidth (Δּג) (nm) 

Light-emitting diode                              20-100 

Laser diode                                             1 - 5 

Nd:YAG laser                                           0.1  

 HeNe laser                                              0.002 

 

Figure 3-3 illustrates some of the preceding points. It is a plot of the wavelength 
distribution of power radiated by a representative LED.  

The wavelength, or frequency, content of a signal is called its spectrum.  

 For the LED in the figure, the center wavelength is 820 nm (0.82) µm.  

 The linewidth is normally taken to be the width to the half-power points: so, in 
this example, Δּ30 = גnm (805-835 nm). The fractional bandwidth is 30/820 = 
0.037, or 3.7%. 

 According to Table 3-1, laser diodes are more coherent than LEDs.  

 The solid state neodymium yttrium-aluminum-garnet laser (Nd:YAG) and the 
helium-neon gas laser (HeNe) are even better.  

 However, the small size and low power requirements of the LED and LD 
sources make them the most practical for fiber systems, even though they 
have much greater line widths than other laser emitters. 



At this point it is natural to ask: Do we consider a source to have negligible 
bandwidth (that is, treat it as a perfectly coherent source), or do we need to 
consider its lack of coherence?  

In the discussion that follows, we will examine how the source's spectral width 
limns the information capacity of a fiber system. If the limiting capacity is higher 
than needed then the non-coherence can be ignored 

 

 

 



Material Dispersion and Pulse Distortion 

 In Section 2-1 we related the wave velocity r to the refractive index n by the 
equation v = c/n. 

 For the glasses used in optic fibers, the refractive index varies with 
wavelength. Therefore, the wave velocity also varies with wavelength.  

 Dispersion is the name given to the property of velocity variation with wave-
length.  

 When, as in the present example, the velocity variation is caused by some 
property of the material, the effect is called material dispersion.  

 Consider what happens when a real source (nonzero bandwidth) emits a 
pulse of light into a dispersive glass fiber.  

 The initial pulse consists of a sum of pulses that are identical, except for their 
wavelengths.  

 This is illustrated in Fig. 3-4 for a few of the source wavelengths.  

 

 

 

 

 

 

 

 

Figure 3-4    Pulse spreading caused by 
propagation through a dispersive material. 
The complete pulse contains wavelengths 
A1, A2, and A3, each traveling at a different 
speed. 

 

 The several pulses travel at different velocities, reaching the end of the fiber 
at slightly different times.  

 When summed at the output, the slightly displaced pulses add together, 
yielding an output that is lengthened, or spread, relative to the input signal.  

 This illustrates how dispersion creates pulse distortion.  

 The farther the pulse travel, the greater the spreading. 

 Dispersion will also distort an analog signal. Figure 3-5 shows an analog 
wave shape propagated at three different wavelengths.  

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5    Dispersion causes 
loss amplitude of an analog signal. 

 

 

At the input the three wavelengths vary together in phase with each other, 
creating a large signal variation.  

After travel through the dispersive media, these wavelengths are no longer in 
phase! When added together they produce a signal variation lower in amplitude 
than the input signal variation.  

Dispersion does not change the average power or the modulation frequencies, 
but it does lower the signal variation. The transmitted information is contained in 
this variation, so its attenuation is troublesome. 

We may think of this result as broadening the signal peak (lowering its amplitude 
and filling in the valley (raising its level), Excessive broadening will cause loss of 
the signal variation altogether. 

 

 Distortion caused by material (or wave guide) dispersion can be reduced by 
us sources with smaller bandwidths i.e., using more coherent emitters.  

 A laser diode has the advantage over an LED in this respect.  

 In principle, dispersive distortion could be reduced by filtering the optic beam 
at the transmitter or receiver, allowing only a very narrow band of 
wavelengths to reach the photodetector. This technique has two drawbacks:  

o Fill cannot be constructed with passbands narrow enough to be 
effective,  

o a narrowband filter would greatly reduce the optic power by eliminating 
the light at the unwanted wavelength. 

 Dispersion in glass is easily observed. We have all seen the results of 
dispersion when a glass prism separates white light into its component colors.  

 This experiment is explained by the wavelength dependence the refractive 
index of glass. The incident light rays are bent according to Snell's 1aw. 



 

Solutions of above  

 Pulse spreading reduces the bandwidth and data capacity of a fiber 
communications link in the manner described later in this section.  

 Because of this, many techniques for minimizing pulse spreading have been 
pursued.  

 A few that we already know about are: 

1. operating at the zero-dispersion wavelength and  

2. choosing very coherent (small spectral width) light sources.  

 These solutions (often applied together) have been common since the mid-
1980s.  

 Improvements now take the form of shifting the fiber's zero-dispersion point to 
wavelengths of lower fiber attenuation and producing more coherent laser 
sources. 

 Another technique that shows promise for reducing pulse spreading is the 
production of solitons.  

 A soliton is a pulse that travels along a fiber without changing shape.  

 How can this happen. The actual procedure is fairly complicated, but some 
insight into soliton propagation can be easily developed.  

 Pulses broaden because dispersion causes some wavelengths emitted by 
the light source to travel faster than other wavelengths.  

 All we need do is find some property of the fiber that counters this tendency. 

 It turns out that such a property does exist. It is a fiber nonlinearity where the 
index of refraction depends upon the intensity of the light beam.  

 Since the pulse velocity depends on the index of refraction, it is clear that the 
intensity of the beam can itself influence the speed of the various 
wavelengths propagating along the fiber.  

 Usually this phenomenon is not observed, because it is quite small and 
requires a moderately large amount of optical power before becoming 
significant.  

 To form a soliton, the initial pulse must have a particular peak energy and 
pulse shape, 

 To be specific, the product of pulse energy and pulse width must be a 
constant.  

 The value of the constant depends on the magnitudes of the dispersion and 
the nonlinearity.  

 With too little power, the nonlinearity is too weak to be effective in 



compensating for dispersion.  

 If the power is too great, then the pulse may actually continually change 
widths as it travels, owing to imperfect (and distance-dependent) 
compensation.  

 In addition, the nonlinear compensation is such that solitons are produced 
only at wavelengths longer than the zero-dispersion wavelength in glass 
fibers.  

 That is, the nonlinearity acts with dispersion to further broaden pulses at the 
shorter wavelengths and only compensates at the longer ones.  

 We conclude that soliton pulses can be expected in silica fibers only when 
operating in the 1300- to 1600-nm range. 

 Although solitons retain pulse widths during propagation, solitons do 
attenuate just like other waves.  

 It will be imperative for long systems that the optical beam be amplified pe-
riodically so that the pulse energy not fall below that required for soliton 
maintenance.  

 Various optical amplifiers (to be described in Section 6-7) are candidates for 
the amplification process. 

 Soliton widths of a few picoseconds are realizable.  

 The corresponding data rates (the inverse of the soliton widths) are over 10 
Gbps.  

 Multigigabit-per-second systems covering many thousand kilometers with 
amplifier spacings of several tens of kilometers can be designed with soliton 
pulses.  

 The product of data rate and fiber path length for such systems is far greater 
than can be achieved by more conventional fiber techniques. 

Information Rate 

 Pulse spreading limits the information capacity of any transmission system in 
the manner described in what follows.  

 For numerical calculations we will use the spreads generated by material 
dispersion.  

 The equations developed apply regardless of the cause of the distortion. We 
will investigate the limits on both analog and digital links.  

 Without long and complex derivations, exact results cannot be obtained. 

 Reasonable limits can be developed based on approximate intuitive 
analyses.  

 The results obtained will be useful in first-order design and will deepen 
understanding of the ability of fiber links to carry information. 



 First, consider a sinusoidally modulated beam of light (like that shown in Fig. 
3-5).  

 The modulation frequency is / and the period is T = I//. Suppose that the 
source radiates optic wavelengths between A! and A2.  

 How much delay between the fastest and slowest wavelength is acceptable? 
Figure 3-9 shows the received power at Aj and A2 when the delay is equal to 
half the modulation period; that is, 

 

With this amount of delay, the modulation cancels out completely when the 
two waves are added. Modulated power carried at wavdengths between \{ and 
A2 will have delays smaller than T/2 and will partially cancel, resulting in a small 
signal variation at the receiver. If we take Eq. (3-15) as the maximum 

terns in the shorter-wavelength range 0,8-0.9 /im; so they are used only 
when necessary to achieve higher performance. The tabulated rates are fairly 
high. They will be lower in some systems because of additional pulse spreading 
caused by modal distortion, as described in Section 5-6. 

 

 

 

 

The information limits in Eqs. (3-16), (3-19), (3-20), and (3-21) apply 
whether the pulse spread is due to material dispersion or other causes. These 
results are approximate because of the assumptions made in developing them. 
They do, however, yield reasonable values for initial system design. They are 
also important because they show the relationships between pulse spreading 
and the allowed digital data rates and analog modulation frequencies. 

 



3-3 POLARIZATION 

 The electric field of a light beam has several directions associated with it. 

 One of these, the direction of travel, has already been discussed with regard 
to phase shift, wavelength, velocity, and attenuation of the propagating wave. 

 The other direction is that of the electric-field vector itself. Figure 3-13 shows 
the relationship between the vector £ and the direction of travel for a simple 
plane wave.  

 The wave travels in the z direction, and the electric-field vector points in the x 
direction.  

 An electric field that points in just one direction is said to be linearly polarized, 
because it always points along the same single line. 

 

 

 The electric vector is always perpendicular to the direction of travel for a 
plane wave in an unbounded medium.  

 This being so, the field in Fig. 3-13 could also point in the v direction while 
traveling in the z direction.  

 The actual direction of polarization is determined by the polarization of the 
light source and by any polarization-sensitive elements through which the 
beam passes.  

 It is also possible for two waves to simultaneously travel in the z direction, 
one polarized in the x direction and one polarized in the v direction.  

 These two waves would be independent of each other because of their 
orthogonal polarization.  

 The term mode refers to the different ways a wave can travel in a given 
direction.  

 The two independent waves just described are the two plane-wave modes of 
an unbounded medium.  

 It might occur that other modes are possible, having polarizations in the xy 



plane at some angle to the x or y axis.  

 Any electric-field vector can be decomposed into its x and y components, so 
that such a field is simply the combination of the two modes already 
described. 

 A wave is unpolarized if its electric vector varies randomly in direction. Waves 
in most optic fibers are unpolarized, 

 In a guided structure, such as an optic fiber, many modes can exist. 
Polarization is just one of the differences among modes in a waveguide. 

 Modes will be investigated in Chapters 4 and 5. They play an extremely im-
portant part in determining the design and capabilities of an optic 
communications system. 

 



3-4 RESONANT CAVITIES 

 A radio-frequency oscillator consists of  
o an amplifier,  
o a tuned circuit, and  
o a feedback mechanism.  

 The feedback connects the amplifier output to its input, causing the signal to 
increase as it periodically passes through the amplifier.  

 A short time after being turned on, a steady state is reached where the 

system losses are just made up by the gain through the amplifier.  

 Now oscillator maintains a constant output power. The tuned circuit 
determines the oscillation frequency. 

 A laser is a very-high-frequency oscillator. It may correctly be referred to as 
an optic oscillator.  

 Its components have functions paralleling those of lower-frequency 
oscillators.  

 The laser sketched in Fig. 3-14 consists of a cylindrically shaped medium with 
mirrors attached at each end.  

 

 The medium provides the amplification. Light is amplified in this material by 
the mechanism described in Chapter 6.  

 Properties of the medium determine the output frequency and spectral width 
of the laser. 

 In this section we are primarily interested in the purpose of the mirrors. The 
mirrors provide feedback for the light oscillator, reflecting the light back and 
forth through the amplifying medium.  

 Power exits the laser through one of the mirrors, which is partially 
transmitting.  

 In some lasers, both mirrors transmit, allowing power to be obtained from 
both ends of the device.  

 This construction is valuable for laser diodes in fiber systems.  

 Light from one emitting end is coupled to the transmitting fiber, and light from 
the other end is measured to monitor the source status.  

 Fluctuations in source power are quickly determined, and automatic 
corrections in the drive circuit return the laser to the required output level. 



 The two mirrors in Fig. 3-14 form a cavity (called a Fabry-Perot resonator) 
within which two waves exist, one moving to the right and one moving to the 
left.  

 These waves are drawn at various times in Fig. 3-15 for a cavity of length L. 

 

  

Figure 3-15 Optical waves in a cavity of length L at various times: t3 > t2 > t1.  The top figures 
portray the wave moving to the right; the middle ones, the wave moving to the left; the bottom 
ones, the total wave. 

  

 The top figures show the wave moving to the right, and the middle ones show 
the wave moving to the left.  

 The total field in the cavity is the sum of the two moving waves and is shown 
in the bottom figure at the times indicated.  

 These drawings illustrate the ways in which electromagnetic waves can 
interfere with each other.  

 When waves have the same phase, they add constructively. This is the 
condition at times t1 and t3 on the figure.  

 The total field is greater than either of its components. When waves are 180° 
out of phase, as at time t2, they interfere destructively.  

 The total field is zero when waves of equal amplitude interfere destructively. 
This is an example of the wavelike behavior of light.  

 If we draw the total wave for all periods of time on the same figure, we find a 
repeating pattern of peaks and nulls.  

 

 

t1                                      t2                                     t3 



3-5 REFLECTION AT A PLANE BOUNDARY 

 Problem concerning the amount of light reflected at a boundary between two 
dielectrics are an important part of the study and practice of optics.  

 

  

Figure 3-19    Reflecting surfaces in a fiber system.  Light rays are reflected at the input (A), at 
the core interface (B), and at the boundaries of an air gap formed at a connector or splice (C or 
D). 

 

 These problems are particularly critical in the design and analysis of fiber 
systems. Reflecting surfaces occur in the situations illustrated in Fig. 3-19. 
These are: 

1. The air-to-glass boundary where light is coupled from a source into a fiber 

2. The interface between the fiber core and its surrounding layer 

3. The two air-glass boundaries where there is an air gap between two 
fibers being connected 

 Light reflected at the input and at the connector gap should be small, 
because these reflections reduce the power being transmitted.  

 Include these losses in calculations of the total system power budget.  

 On the other hand, the internal reflection at the core boundary (point B in Fig. 
3-19) should be high to keep the light inside the fiber.  

 We will determine the amounts of reflection in this section. 

 The simplest computations for reflection loss are those for which the incident 
beam is traveling normal to the boundary, as in Fig. 3-20.  

 The reflection coefficient p is the ratio of the reflected electric field to the 
incident electric field. For normal incidence, it is 

 

where n1 is the refractive index in the incident region and n2 is the index in the 
transmitted region.  

If n2 >. N1, then the reflection coefficient becomes negative. This indicates a 180° 
phase shift between the incident and reflected electric fields. 

 

 



 

Fig 3-20 A Wave incident on a plane boundary between two dielectrics (refractive indices n1 & 
n2) is partially transmitted and partially reflected. 

 

The reflectance R is the ratio of the reflected-beam intensity to the incident-beam 
intensity. Because the intensity in an optic beam is proportional to the square of 
its electric field, the reflectance is equal to the square of the reflection coefficient. 

Thus 

 

 



3-6 CRITICAL-ANGLE REFLECTIONS 

 As drawn in Fig. 3-23, there is total reflection for incident angles greater than 
a particular value, labeled θc.   

 θc is called the critical angle.  

 It is easily determined from Eqs. (3-29) and (3-30) by noting that |pp| = 1 and 
|ps| = 1, when n2

2 – n1
2 sin2 θi =0. The angle satisfying this equation is the 

critical angle, so that 

 

 Because the sine of an angle is never greater than 1,  

 it is clear that critical-angle reflections occur only when n1 > n2, that is, when a 
wave travels from a region of higher refractive index into a region of lower 

index.  

 This explains the occurrence of a critical angle in Fig. 3-23 (glass-to-air 
boundary), but not in Fig. 3-22 (air-to-glass boundary).  

 An alternative and instructive development of total reflection involves Snells 
law.  

 We will consider a glass-to-air boundary and find the angle of transmission 
for all incident angles from Eq. (2-3), sin 0, = (nl/n2) sin 0,.  

 The result is plotted in Fig. 3-26. As shown in the figure, the transmission 
angle increases faster than the incident angle.  

 It reaches 90° when sin θt = n2/n1, precisely the critical-angle condition, Eq. 
(3-34).  

 

 By referring to Fig. 3-27, the meaning of a 90° transmission angle is clear. 
The transmitted wave no longer propagates into the second medium.  

 We conclude that all the light must reflect back into the first medium. Perfect 
reflection at a dielectric-dielectric boundary is called total internal reflection. 



 

 Critical angles, computed from Eq. (3-34) for several combinations of 
materials, are listed in Table 3-3.  

 The plastic-plastic boundary in the table is typical of an all-plastic fiber whose 
core and surrounding cladding have different refractive indices.  

 The glass-plastic entry corresponds to a fiber having a glass core surrounded 
by plastic.  

 The glass-glass boundary is typical of an all-glass fiber in which the core and 
cladding have slightly different compositions and, thus, slightly different 
refractive indices.  

 These fibers guide light by totally reflecting the rays that strike their 
boundaries.  

 The rays must be at, or beyond, the critical angle to be guided without loss, 
however. 

 

TABLE 3-3.    Critical Angles 

Boundary n1 n2 Θc 

Glass-air 
Plastic-plastic -
Glass-plastic 
Glass-glass 

1.5  
1.49  
1.46  
1.48  

1.0 
1.39 
1.4 
1.46 

41.8° 
68.9° 
73.5° 
80.6° 

 

Assignment no 3 

 

Q 1.Discuss the following: 

1. Resonant cavities 

2. Critical-angle reflections 

3. Reflection at a plane boundary 

Q2. Discuss dispersion, pulse distortion, and information rate. 

 


